Cancer-derived cholesterol sulfate is a key mediator to prevent tumor infiltration by effector T cells

Takaaki Tatsuguchi, Takehito Uruno, Yuki Sugiura, Daiji Sakata, Yoshihiro Izumi, Tetsuya Sakurai, Yuko Hattori, Eiji Oki, Naoto Kubota, Koshiro Nishimoto, Masafumi Oyama, Kazufumi Kunimura, Takuto Ohki, Takeshi Bamba, Hideaki Tahara, Michiie Sakamoto, Masafumi Nakamura, Makoto Suematsu, Yoshinori Fukui

研究成果: Article査読

9 被引用数 (Scopus)


Effective tumor immunotherapy requires physical contact of T cells with cancer cells. However, tumors often constitute a specialized microenvironment that excludes T cells from the vicinity of cancer cells, and its underlying mechanisms are still poorly understood. DOCK2 is a Rac activator critical for migration and activation of lymphocytes. We herein show that cancer-derived cholesterol sulfate (CS), a lipid product of the sulfotransferase SULT2B1b, acts as a DOCK2 inhibitor and prevents tumor infiltration by effector T cells. Using clinical samples, we found that CS was abundantly produced in certain types of human cancers such as colon cancers. Functionally, CS-producing cancer cells exhibited resistance to cancer-specific T-cell transfer and immune checkpoint blockade. Although SULT2B1b is known to sulfate oxysterols and inactivate their tumor-promoting activity, the expression levels of cholesterol hydroxylases, which mediate oxysterol production, are low in SULT2B1b-expressing cancers. Therefore, SULT2B1b inhibition could be a therapeutic strategy to disrupt tumor immune evasion in oxysterol-non-producing cancers. Thus, our findings define a previously unknown mechanism for tumor immune evasion and provide a novel insight into the development of effective immunotherapies.

ジャーナルInternational immunology
出版ステータスPublished - 2022 5月 1

ASJC Scopus subject areas

  • 免疫アレルギー学
  • 免疫学


「Cancer-derived cholesterol sulfate is a key mediator to prevent tumor infiltration by effector T cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。