TY - JOUR

T1 - Capacity of optical communication in loss and noise with general quantum Gaussian receivers

AU - Takeoka, Masahiro

AU - Guha, Saikat

PY - 2014/4/10

Y1 - 2014/4/10

N2 - Laser-light (coherent-state) modulation is sufficient to achieve the ultimate (Holevo) capacity of classical communication over a lossy and noisy optical channel, but requires a receiver that jointly detects long modulated code words with highly nonlinear quantum operations, which are near-impossible to realize using current technology. We analyze the capacity of the lossy-noisy optical channel when the transmitter uses coherent-state modulation but the receiver is restricted to a general quantum-limited Gaussian receiver, i.e., one that may involve arbitrary combinations of Gaussian operations [passive linear optics: beam splitters and phase shifters; second-order nonlinear optics (or active linear optics): squeezers, along with homodyne or heterodyne detection measurements] and any amount of classical feedforward within the receiver. Under these assumptions, we show that the Gaussian receiver that attains the maximum mutual information is either homodyne detection, heterodyne detection, or time sharing between the two, depending upon the received power level. In other words, our result shows that to exceed the theoretical limit of conventional coherent optical communication, one has to incorporate non-Gaussian, i.e., third- or higher-order nonlinear operations in the receiver. Finally we compare our Gaussian receiver limit with experimentally feasible non-Gaussian receivers and show that in the regime of low received photon flux, it is possible to overcome the Gaussian receiver limit by relatively simple non-Gaussian receivers based on photon counting.

AB - Laser-light (coherent-state) modulation is sufficient to achieve the ultimate (Holevo) capacity of classical communication over a lossy and noisy optical channel, but requires a receiver that jointly detects long modulated code words with highly nonlinear quantum operations, which are near-impossible to realize using current technology. We analyze the capacity of the lossy-noisy optical channel when the transmitter uses coherent-state modulation but the receiver is restricted to a general quantum-limited Gaussian receiver, i.e., one that may involve arbitrary combinations of Gaussian operations [passive linear optics: beam splitters and phase shifters; second-order nonlinear optics (or active linear optics): squeezers, along with homodyne or heterodyne detection measurements] and any amount of classical feedforward within the receiver. Under these assumptions, we show that the Gaussian receiver that attains the maximum mutual information is either homodyne detection, heterodyne detection, or time sharing between the two, depending upon the received power level. In other words, our result shows that to exceed the theoretical limit of conventional coherent optical communication, one has to incorporate non-Gaussian, i.e., third- or higher-order nonlinear operations in the receiver. Finally we compare our Gaussian receiver limit with experimentally feasible non-Gaussian receivers and show that in the regime of low received photon flux, it is possible to overcome the Gaussian receiver limit by relatively simple non-Gaussian receivers based on photon counting.

UR - http://www.scopus.com/inward/record.url?scp=84906546572&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84906546572&partnerID=8YFLogxK

U2 - 10.1103/PhysRevA.89.042309

DO - 10.1103/PhysRevA.89.042309

M3 - Article

AN - SCOPUS:84906546572

SN - 1050-2947

VL - 89

JO - Physical Review A - Atomic, Molecular, and Optical Physics

JF - Physical Review A - Atomic, Molecular, and Optical Physics

IS - 4

M1 - 042309

ER -