TY - GEN
T1 - Challenges in parallel operation of quantum key distribution and data transmission
AU - Eriksson, Tobias A.
AU - Hirano, Takuya
AU - Rademacher, Georg
AU - Puttnam, Benjamin J.
AU - Luis, Ruben S.
AU - Fujiwara, Mikio
AU - Namiki, Ryo
AU - Awaji, Yoshinari
AU - Takeoka, Masahiro
AU - Wada, Naoya
AU - Sasaki, Masahide
N1 - Funding Information:
Acknowledgments: Funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), JSPS KAKENHI Grant No JP18H01157, JP17H01281, and the Swedish Research Council (Vetenskapsrdet) Grant No 2017-06179 References 1. C. Cesare, “Encryption faces quantum foe,” Nature, vol. 525, no. 7568, p. 167 (2015). 2. E. Diamanti, et al., “Practical challenges in quantum key distribution,” npj Quantum Information vol. 2, p. 16025 (2016). 3. Y. Mao, et al., “Integrating quantum key distribution with classical communications in backbone fiber network,” Optics Express, vol. 26, pp. 6010-6020 (2018). 4. L.-J. Wang, et al, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” Physical Review A, vol. 95, 012301 (2017) 5. J. F. Dynes, et al., “Ultra-high bandwidth quantum secured data transmission,” Scientific Reports, vol 6, 35149 (2016). 6. D. Huang, et al., “Field demonstration of a continuous-variable quantum key distribution network,” Optics Letters, vol. 41, pp. 3511-3514 (2016). 7. F. Karinou, et al., “Toward the integration of CV quantum key distribution in deployed optical networks,” IEEE Photonic Technology Letters, vol. 30, pp. 650-653 (2018). 8. T. A. Eriksson, et al., “Coexistence of continuous variable quantum key distribution and 7 × 12.5 Gbit/s classical channels,” proc. IEEE Summer Topical Meeting Series (SUM) (2018). 9. S. Kleis, et al., “Experimental investigation of heterodyne quantum key distribution in the S-Band embedded in a commercial DWDM system,” proc. Optical Fiber Communication Conference (OFC) (2019), paper Th1J.3. 10. T. A. Eriksson, et al., “Joint propagation of continuous variable quantum key distribution and 18 × 24.5 Gbaud PM-16QAM channels,” proc. European Conference on Optical Communication (ECOC) (2018), paper We2.37. 11. T. A. Eriksson, et al., “Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data chan-nels,” Communications Physics, vol. 2, no. 1, 9 (2019). 12. B. Qi, et al., “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New Journal of Physics vol. 12, 103042 (2010). 13. T. A. Eriksson, et al., “Crosstalk impact on continuous variable quantum key distribution in multicore fiber transmission,” IEEE Photonics Technology Letters, vol. 31, no 6, pp. 467–470 (2019). 14. Y. Li, et al., “Influence of guided acoustic wave Brillouin scattering on excess noise in fiber-based continuous variable quantum key distribution,” Journal of the Optical Society of America B (JOSA B), vol. 31, no. 10, pp. 2379–2383 (2014). 15. R. Kumar, et al., “Coexistence of continuous variable QKD with intense DWDM classical channels,” New Journal of Physics vol. 17 no. 4, 043027 (2015).
Publisher Copyright:
© OSA 2019.
PY - 2019
Y1 - 2019
N2 - We discuss impairments and design of fiber links supporting co-propagation of quantum key distribution and classical signals.
AB - We discuss impairments and design of fiber links supporting co-propagation of quantum key distribution and classical signals.
UR - http://www.scopus.com/inward/record.url?scp=85077181334&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077181334&partnerID=8YFLogxK
U2 - 10.1364/SPPCOM.2019.QtW3E.2
DO - 10.1364/SPPCOM.2019.QtW3E.2
M3 - Conference contribution
AN - SCOPUS:85077181334
SN - 9781943580644
T3 - Optics InfoBase Conference Papers
BT - Signal Processing in Photonic Communications, SPPCom 2019
PB - Optica Publishing Group (formerly OSA)
T2 - Signal Processing in Photonic Communications, SPPCom 2019
Y2 - 29 July 2019
ER -