Chromatic Numbers and Cycle Parities of Quadrangulations on Nonorientable Closed Surfaces

Atsuhiro Nakamoto, Seiya Negami, Katsuhiro Ota

研究成果: Article査読

抄録

In this paper, we shall show that every quadrangulation on a nonorientable closed surface with sufficiently large representativity has chromatic number 2, 3 or 4 and characterize those for each value, discussing an algebraic invariant called a cycle parity. In particular, we shall prove that such a quadrangulation is 4-chromatic if and only if it has an odd cycle which cuts open the host surface into an orientable surface.

本文言語English
ページ(範囲)509-518
ページ数10
ジャーナルElectronic Notes in Discrete Mathematics
11
DOI
出版ステータスPublished - 2002 7月

ASJC Scopus subject areas

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「Chromatic Numbers and Cycle Parities of Quadrangulations on Nonorientable Closed Surfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル