Chromatic numbers and cycle parities of quadrangulations on nonorientable closed surfaces

Atsuhiro Nakamoto, Seiya Negami, Katsuhiro Ota

研究成果: Article査読

11 被引用数 (Scopus)

抄録

In this paper, we shall show that every quadrangulation on a nonorientable closed surface with sufficiently large representativity has chromatic number 2, 3 or 4 and characterize those for each value, discussing an algebraic invariant called a cycle parity. In particular, we shall prove that such a quadrangulation is 4-chromatic if and only if it has an odd cycle which cuts open the host surface into an orientable surface.

本文言語English
ページ(範囲)211-218
ページ数8
ジャーナルDiscrete Mathematics
285
1-3
DOI
出版ステータスPublished - 2004 8月 6

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学

フィンガープリント

「Chromatic numbers and cycle parities of quadrangulations on nonorientable closed surfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル