Connected primitive disk complexes and genus two goeritz groups of lens spaces

Sangbum Cho, Yuya Koda

研究成果: Article査読

10 被引用数 (Scopus)

抄録

Given a stabilized Heegaard splitting of a three-manifold, the primitive disk complex for the splitting is the subcomplex of the disk complex for a handlebody in the splitting spanned by the vertices of the primitive disks. In this work, we study the structure of the primitive disk complex for the genus-2 Heegaard splitting of each lens space. In particular, we show that the complex for the genus-2 splitting for the lens space L(p, q) with 1 ≤ q ≤ p/2 is connected if and only if p ≡ ±1 (mod q), and describe the combinatorial structure of each of those complexes. As an application, we obtain a finite presentation of the genus-2 Goeritz group of each of those lens spaces, the group of isotopy classes of orientation preserving homeomorphisms of the lens space that preserve the genus-2 Heegaard splitting of it.

本文言語English
ページ(範囲)7302-7340
ページ数39
ジャーナルInternational Mathematics Research Notices
2016
23
DOI
出版ステータスPublished - 2016
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Connected primitive disk complexes and genus two goeritz groups of lens spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル