抄録
Exfoliation of layered compounds generates nanosheets, such as monolayers and few-layers. In general, it is not easy to control surface chemistry of the exfoliated nanosheets. Here, a new approach for surface functionalization of titanate monolayer coupled with exfoliation is reported. The precursor layered composite is prepared by intercalation of long-chain alkyl-ammonium ion, such as stearylammonium ion (C18NH3 +), in the interlayer space of layered titanate. The layered composite of titanate and C18NH3 + (C18TiO2) is dispersed in the toluene solution containing dihydroxynaphthalene (DHN) for the coupled exfoliation and surface modification. The surface molecule is partially exchanged from the original C18NH3 + to the guest DHN. The resultant hydrophobic titanate monolayer with surface modification by the C18NH3 + and DHN (DHN/C18TiO2) shows the visible-light absorption based on the charge-transfer excitation from the highest occupied molecular orbital of the adsorbed DHN to the conduction band of the titanate. The present synthetic approach can be applied to synthesis of a variety of surface-functionalized monolayers and their bandgap engineering.
本文言語 | English |
---|---|
論文番号 | 1601014 |
ジャーナル | Advanced Materials Interfaces |
巻 | 4 |
号 | 7 |
DOI | |
出版ステータス | Published - 2017 4月 7 |
ASJC Scopus subject areas
- 材料力学
- 機械工学