Data Processing and Analysis in Liquid Chromatography–Mass Spectrometry-Based Targeted Metabolomics

Masahiro Sugimoto, Yumi Aizawa, Atsumi Tomita

研究成果: Chapter

抄録

Mass spectrometry (MS)-based metabolomics provides high-dimensional datasets; that is, the data include various metabolite features. Data analysis begins by converting the raw data obtained from the MS to produce a data matrix (metabolite × concentrations). This is followed by several steps, such as peak integration, alignment of multiple data, metabolite identification, and calculation of metabolite concentrations. Each step yields the analytical results and the accompanying information used for the quality assessment of the anterior steps. Thus, the measurement quality can be analyzed through data processing. Here, we introduce a typical data processing procedure and describe a method to utilize the intermediate data as quality control. Subsequently, commonly used data analysis methods for metabolomics data, such as statistical analyses, are also introduced.

本文言語English
ホスト出版物のタイトルMethods in Molecular Biology
出版社Humana Press Inc.
ページ241-255
ページ数15
DOI
出版ステータスPublished - 2023
外部発表はい

出版物シリーズ

名前Methods in Molecular Biology
2571
ISSN(印刷版)1064-3745
ISSN(電子版)1940-6029

ASJC Scopus subject areas

  • 分子生物学
  • 遺伝学

フィンガープリント

「Data Processing and Analysis in Liquid Chromatography–Mass Spectrometry-Based Targeted Metabolomics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル