Dataset Culling: Towards Efficient Training of Distillation-Based Domain Specific Models

Kentaro Yoshioka, Edward Lee, Simon Wong, Mark Horowitz

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Real-time CNN-based object detection models for applications like surveillance can achieve high accuracy but are computationally expensive. Recent works have shown 10 to 100× reduction in computation cost for inference by using domain-specific networks. However, prior works have focused on inference only. If the domain model requires frequent retraining, training costs can pose a significant bottleneck. To address this, we propose Dataset Culling: a pipeline to reduce the size of the dataset for training, based on the prediction difficulty. Images that are easy to classify are filtered out since they contribute little to improving the accuracy. The difficulty is measured using our proposed confidence loss metric with little computational overhead. Dataset Culling is extended to optimize the image resolution to further improve training and inference costs. We develop fixed-angle, long-duration video datasets across several domains, and we show that the dataset size can be culled by a factor of 300× to reduce the total training time by 47× with no accuracy loss or even with slight improvement.1

本文言語English
ホスト出版物のタイトル2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings
出版社IEEE Computer Society
ページ3237-3241
ページ数5
ISBN(電子版)9781538662496
DOI
出版ステータスPublished - 2019 9月
外部発表はい
イベント26th IEEE International Conference on Image Processing, ICIP 2019 - Taipei, Taiwan, Province of China
継続期間: 2019 9月 222019 9月 25

出版物シリーズ

名前Proceedings - International Conference on Image Processing, ICIP
2019-September
ISSN(印刷版)1522-4880

Conference

Conference26th IEEE International Conference on Image Processing, ICIP 2019
国/地域Taiwan, Province of China
CityTaipei
Period19/9/2219/9/25

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • 信号処理

フィンガープリント

「Dataset Culling: Towards Efficient Training of Distillation-Based Domain Specific Models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル