Decoding gut microbiota by imaging analysis of fecal samples

Chikara Furusawa, Kumi Tanabe, Chiharu Ishii, Noriko Kagata, Masaru Tomita, Shinji Fukuda

研究成果: Article査読

2 被引用数 (Scopus)

抄録

The gut microbiota plays a crucial role in maintaining health. Monitoring the complex dynamics of its microbial population is, therefore, important. Here, we present a deep convolution network that can characterize the dynamic changes in the gut microbiota using low-resolution images of fecal samples. Further, we demonstrate that the microbial relative abundances, quantified via 16S rRNA amplicon sequencing, can be quantitatively predicted by the neural network. Our approach provides a simple and inexpensive method of gut microbiota analysis.

本文言語English
論文番号103481
ジャーナルiScience
24
12
DOI
出版ステータスPublished - 2021 12月 17

ASJC Scopus subject areas

  • 一般

フィンガープリント

「Decoding gut microbiota by imaging analysis of fecal samples」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル