TY - JOUR
T1 - Detection of esophageal fiducial marker displacement during radiation therapy with a 2-dimensional on-board imager
T2 - Analysis of internal margin for esophageal cancer
AU - Fukada, Junichi
AU - Hanada, Takashi
AU - Kawaguchi, Osamu
AU - Ohashi, Toshio
AU - Takeuchi, Hiroya
AU - Kitagawa, Yuko
AU - Seki, Satoshi
AU - Shiraishi, Yutaka
AU - Ogata, Haruhiko
AU - Shigematsu, Naoyuki
PY - 2013/3/15
Y1 - 2013/3/15
N2 - Purpose: To quantify the interfraction displacement of esophageal fiducial markers for primary esophageal cancer radiation therapy. Methods and Materials: Orthogonal 2-dimensional (2D) matching records fused to vertebrae were analyzed in clinically staged T1/2N0 esophageal cancer patients undergoing endoscopic clipping as fiducial metal markers. Displacement of the markers between the digitally reconstructed radiographs and on-board kilovoltage images during radiation therapy was analyzed according to direction and esophageal site. Results: Forty-four patients, with 81 markers (10 proximal, 42 middle, and 29 distal), underwent 367 2D matching sessions during radiation therapy. The mean (SD) absolute marker displacement was 0.26 (0.30) cm in the right-left (RL), 0.50 (0.39) cm in the superior-inferior (SI), and 0.24 (0.21) cm in the anterior-posterior (AP) direction. Displacement was significantly larger in the SI than in the RL and AP directions (P<.0001). In the SI direction, mean absolute displacements of the distal, middle, and proximal esophagus were 0.67 (0.45) cm, 0.42 (0.32) cm, and 0.36 (0.30) cm, respectively. Distal esophagus displacement was significantly larger than those of the middle and proximal esophagus (P<.0001). The estimated internal margin to cover 95% of the cases was 0.75 cm in the RL and AP directions. In the SI direction, the margin was 1.25 cm for the proximal and middle esophagus and 1.75 cm for the distal esophagus. Conclusions: The magnitude of interfraction displacement of esophageal clips was larger in the SI direction, particularly in the distal esophagus, but substantial displacement was observed in other directions and at other esophageal sites. It is practical to take estimated movements into account with internal margins, even if vertebrae-based 2D matching is performed.
AB - Purpose: To quantify the interfraction displacement of esophageal fiducial markers for primary esophageal cancer radiation therapy. Methods and Materials: Orthogonal 2-dimensional (2D) matching records fused to vertebrae were analyzed in clinically staged T1/2N0 esophageal cancer patients undergoing endoscopic clipping as fiducial metal markers. Displacement of the markers between the digitally reconstructed radiographs and on-board kilovoltage images during radiation therapy was analyzed according to direction and esophageal site. Results: Forty-four patients, with 81 markers (10 proximal, 42 middle, and 29 distal), underwent 367 2D matching sessions during radiation therapy. The mean (SD) absolute marker displacement was 0.26 (0.30) cm in the right-left (RL), 0.50 (0.39) cm in the superior-inferior (SI), and 0.24 (0.21) cm in the anterior-posterior (AP) direction. Displacement was significantly larger in the SI than in the RL and AP directions (P<.0001). In the SI direction, mean absolute displacements of the distal, middle, and proximal esophagus were 0.67 (0.45) cm, 0.42 (0.32) cm, and 0.36 (0.30) cm, respectively. Distal esophagus displacement was significantly larger than those of the middle and proximal esophagus (P<.0001). The estimated internal margin to cover 95% of the cases was 0.75 cm in the RL and AP directions. In the SI direction, the margin was 1.25 cm for the proximal and middle esophagus and 1.75 cm for the distal esophagus. Conclusions: The magnitude of interfraction displacement of esophageal clips was larger in the SI direction, particularly in the distal esophagus, but substantial displacement was observed in other directions and at other esophageal sites. It is practical to take estimated movements into account with internal margins, even if vertebrae-based 2D matching is performed.
UR - http://www.scopus.com/inward/record.url?scp=84875221073&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875221073&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2012.07.2358
DO - 10.1016/j.ijrobp.2012.07.2358
M3 - Article
C2 - 22975614
AN - SCOPUS:84875221073
SN - 0360-3016
VL - 85
SP - 991
EP - 998
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
IS - 4
ER -