Development of catheter-type optical oxygen sensor and applications to bioinstrumentation

Kosuke Tsukada, Shuhei Sakai, Kentaro Hase, Haruyuki Minamitani

研究成果: Article査読

52 被引用数 (Scopus)

抄録

A catheter-type optical oxygen sensor based on phosphorescence lifetime was developed for medical and animal experimental use. Since the sensor probe should have biocompatibility and high oxygen permeability in vivo, we focused attention on acceptable polymer materials for contact lenses as the substrates of probes. Pd-porphyrin was doped in silicone-based polymer, and was fixed at the edge of an optical fiber inserted in a catheter tube. The shape of the probe was 600 μm in diameter and 100 μm in thickness, and the probe had high oxygen permeability of Dk value 455. In accuracy evaluation, there found an excellent correlation between the pO2 values measured through phosphorescence lifetime using the oxygen sensors and those measured as the calibrating data using oxygen electrodes. The response time required to achieve 90% from reversible default value to be from 150 to 0 mmHg, and from 0 to 150 mmHg was 15.43 and 7.52 s, respectively. In addition, other properties such as temperature and pH dependency, response, and durability of our optical oxygen sensor were investigated. In animal experiments, the catheter-type oxygen sensor was inserted via the femoral artery of a rat, and arterial oxygen pressure was monitored under asphyxiation. The sensor was valid in the range of oxygen concentration sufficient for biometry, and expected to be integrated with an indwelling needle.

本文言語English
ページ(範囲)1439-1445
ページ数7
ジャーナルBiosensors and Bioelectronics
18
12
DOI
出版ステータスPublished - 2003 10月 15

ASJC Scopus subject areas

  • バイオテクノロジー
  • 生物理学
  • 生体医工学
  • 電気化学

フィンガープリント

「Development of catheter-type optical oxygen sensor and applications to bioinstrumentation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル