Development of proactive and reactive behavior via meta-learning of prediction error variance

Shingo Murata, Jun Namikawa, Hiroaki Arie, Jun Tani, Shigeki Sugano

研究成果: Conference contribution

抄録

This paper investigates a possible neurodynamic mechanism that enables autonomous switching between two basic behavioral modes, namely a "proactive mode" and a "reactive mode." In the proactive mode, actions are generated as intended, whereas in the reactive mode actions are generated in response to the sensory state.We conducted neurorobotics experiments to investigate how these two modes can develop and how a robot can learn to switch autonomously between the two modes as necessary by utilizing our recently developed dynamic neural network model. Tasks designed for the robot included switching between proactive imitation of other's predictable movements using acquired memories and reactive following of other's unpredictable movements through iterative learning of alternating predictable and unpredictable movement patterns. The experimental results revealed that this "meta-learning" capability can lead to self-organization of adequate contextual dynamical structures that can perform autonomous switching between the different behavioral modes.

本文言語English
ホスト出版物のタイトルNeural Information Processing - 20th International Conference, ICONIP 2013, Proceedings
ページ537-544
ページ数8
PART 1
DOI
出版ステータスPublished - 2013 12月 1
外部発表はい
イベント20th International Conference on Neural Information Processing, ICONIP 2013 - Daegu, Korea, Republic of
継続期間: 2013 11月 32013 11月 7

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
番号PART 1
8226 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference20th International Conference on Neural Information Processing, ICONIP 2013
国/地域Korea, Republic of
CityDaegu
Period13/11/313/11/7

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Development of proactive and reactive behavior via meta-learning of prediction error variance」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル