Diagnosis of information scrambling from Hamiltonian evolution under decoherence

Tomoya Hayata, Yoshimasa Hidaka, Yuta Kikuchi

研究成果: Article査読

10 被引用数 (Scopus)


We apply a quantum teleportation protocol based on the Hayden-Preskill thought experiment to quantify how scrambling a given quantum evolution is. It has an advantage over the direct measurement of out-of-time ordered correlators when used to diagnose the information scrambling in the presence of decoherence effects stemming from a noisy quantum device. We demonstrate the protocol by applying it to two physical systems: Ising spin chain and SU(2) lattice Yang-Mills theory. To this end, we numerically simulate the time evolution of the two theories in the Hamiltonian formalism. The lattice Yang-Mills theory is implemented with a suitable truncation of Hilbert space on the basis of the Kogut-Susskind formalism. On a two-leg ladder geometry and with the lowest nontrivial spin representations, it can be mapped to a spin chain, which we call the Yang-Mills-Ising model and is also directly applicable to future digital quantum simulations. We find that the Yang-Mills-Ising model shows the signal of information scrambling at late times.

ジャーナルPhysical Review D
出版ステータスPublished - 2021 10月 1

ASJC Scopus subject areas

  • 物理学および天文学(その他)


「Diagnosis of information scrambling from Hamiltonian evolution under decoherence」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。