Dietary l-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut

Sho Kitamoto, Christopher J. Alteri, Michael Rodrigues, Hiroko Nagao-Kitamoto, Kohei Sugihara, Stephanie D. Himpsl, Malak Bazzi, Mao Miyoshi, Tatsuki Nishioka, Atsushi Hayashi, Tina L. Morhardt, Peter Kuffa, Helmut Grasberger, Mohamad El-Zaatari, Shrinivas Bishu, Chiharu Ishii, Akiyoshi Hirayama, Kathryn A. Eaton, Belgin Dogan, Kenneth W. SimpsonNaohiro Inohara, Harry L.T. Mobley, John Y. Kao, Shinji Fukuda, Nicolas Barnich, Nobuhiko Kamada

研究成果: Article査読

67 被引用数 (Scopus)

抄録

Metabolic reprogramming is associated with the adaptation of host cells to the disease environment, such as inflammation and cancer. However, little is known about microbial metabolic reprogramming or the role it plays in regulating the fitness of commensal and pathogenic bacteria in the gut. Here, we report that intestinal inflammation reprograms the metabolic pathways of Enterobacteriaceae, such as Escherichia coli LF82, in the gut to adapt to the inflammatory environment. We found that E. coli LF82 shifts its metabolism to catabolize l-serine in the inflamed gut in order to maximize its growth potential. However, l-serine catabolism has a minimal effect on its fitness in the healthy gut. In fact, the absence of genes involved in l-serine utilization reduces the competitive fitness of E. coli LF82 and Citrobacter rodentium only during inflammation. The concentration of luminal l-serine is largely dependent on dietary intake. Accordingly, withholding amino acids from the diet markedly reduces their availability in the gut lumen. Hence, inflammation-induced blooms of E. coli LF82 are significantly blunted when amino acids—particularly l-serine—are removed from the diet. Thus, the ability to catabolize l-serine increases bacterial fitness and provides Enterobacteriaceae with a growth advantage against competitors in the inflamed gut.

本文言語English
ページ(範囲)116-125
ページ数10
ジャーナルNature Microbiology
5
1
DOI
出版ステータスPublished - 2020 1月 1

ASJC Scopus subject areas

  • 微生物学
  • 免疫学
  • 応用微生物学とバイオテクノロジー
  • 遺伝学
  • 微生物学(医療)
  • 細胞生物学

フィンガープリント

「Dietary l-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル