抄録
Jauslin-Kreiss-Moser andWE made clear the connection between the Aubry-Mather theory and the inviscid forced Burgers equation with a ℤ 2-periodic forcing term and established the smooth approximation of ℤ 2-periodic entropy solutions of the PDE. This paper presents results of a difference approximation to the Aubry-Mather sets. We prove the convergence of the Lax-Friedrichs scheme for the ℤ 2-periodic entropy solutions. This result leads to difference approximations of the corresponding effective Hamiltonian and ℤ 2-periodic viscosity solutions of the Hamilton-Jacobi equation. We numerically construct the Aubry-Mather sets through the approximate entropy solutions, based on the dynamical properties of the Aubry-Mather sets.
本文言語 | English |
---|---|
ページ(範囲) | 2401-2422 |
ページ数 | 22 |
ジャーナル | Nonlinearity |
巻 | 25 |
号 | 9 |
DOI | |
出版ステータス | Published - 2012 9月 |
外部発表 | はい |
ASJC Scopus subject areas
- 統計物理学および非線形物理学
- 数理物理学
- 物理学および天文学(全般)
- 応用数学