TY - JOUR
T1 - Dimension Reduction for Pricing Options Under Multidimensional Lévy Processes
AU - Imai, Junichi
N1 - Funding Information:
The author is grateful to anonymous referees and Editor in Chief for very careful reading and valuable suggestions. This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (24510200).
Publisher Copyright:
© 2014, Springer Japan.
PY - 2014/3
Y1 - 2014/3
N2 - The aim of this study was to develop efficient quasi-Monte Carlo algorithms for pricing European derivative securities under multidimensional Lévy models. In the paper, we first introduce the multidimensional generalized hyperbolic distribution as a normal variance–mean mixture. Using this distribution, we can model a multidimensional generalized Lévy process as a subordinated Brownian motion. Under this process, we develop practically efficient dimension reduction methods that can enhance the numerical efficiency of the quasi-Monte Carlo method. The algorithms extend the generalized linear transformation method that was originally proposed for a univariate Lévy process. We also propose hybrid types of dimension reduction methods in which the dimension reduction techniques are applied separately to the subordinator and the Brownian motion. Through numerical examples we demonstrate that the proposed method realizes a substantial gain in efficiency, relative to the naive Monte Carlo and quasi-Monte Carlo methods in the context of pricing average options.
AB - The aim of this study was to develop efficient quasi-Monte Carlo algorithms for pricing European derivative securities under multidimensional Lévy models. In the paper, we first introduce the multidimensional generalized hyperbolic distribution as a normal variance–mean mixture. Using this distribution, we can model a multidimensional generalized Lévy process as a subordinated Brownian motion. Under this process, we develop practically efficient dimension reduction methods that can enhance the numerical efficiency of the quasi-Monte Carlo method. The algorithms extend the generalized linear transformation method that was originally proposed for a univariate Lévy process. We also propose hybrid types of dimension reduction methods in which the dimension reduction techniques are applied separately to the subordinator and the Brownian motion. Through numerical examples we demonstrate that the proposed method realizes a substantial gain in efficiency, relative to the naive Monte Carlo and quasi-Monte Carlo methods in the context of pricing average options.
KW - Dimension reduction method
KW - Multidimensional Lévy process
KW - Normal variance–mean mixture
KW - Quasi-Monte Carlo
UR - http://www.scopus.com/inward/record.url?scp=84939887912&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84939887912&partnerID=8YFLogxK
U2 - 10.1007/s10690-014-9190-y
DO - 10.1007/s10690-014-9190-y
M3 - Article
AN - SCOPUS:84939887912
SN - 1387-2834
VL - 22
SP - 1
EP - 26
JO - Asia-Pacific Financial Markets
JF - Asia-Pacific Financial Markets
IS - 1
ER -