Doran–Harder–Thompson conjecture via SYZ mirror symmetry: Elliptic curves

研究成果: Article査読

4 被引用数 (Scopus)

抄録

We prove the Doran–Harder–Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi– Yau manifold X degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi–Yau manifold of X can be constructed by gluing the two mirror Landau– Ginzburg models of the quasi-Fano manifolds. The two crucial ideas in our proof are to obtain a complex structure by gluing the underlying affine manifolds and to construct the theta functions from the Landau–Ginzburg superpotentials.

本文言語English
論文番号024
ジャーナルSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
13
DOI
出版ステータスPublished - 2017 4月 11
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 数理物理学
  • 幾何学とトポロジー

フィンガープリント

「Doran–Harder–Thompson conjecture via SYZ mirror symmetry: Elliptic curves」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル