TY - JOUR
T1 - Drag coefficient of a liquid domain with distinct viscosity in a fluid membrane
AU - Tani, Hisasi
AU - Fujitani, Youhei
N1 - Publisher Copyright:
© 2017 Cambridge University Press.
PY - 2018/2/10
Y1 - 2018/2/10
N2 - We calculate the drag coefficient of a circular liquid domain in a flat fluid membrane surrounded by three-dimensional fluids on both sides. The coefficient of a rigid disk is well known, while that of a circular liquid domain is also well known when the membrane viscosity inside the domain equals the one outside the domain. As the ratio of the former viscosity to the latter increases to infinity, the drag coefficient of a liquid domain should approach that of the disk of the same size in the same ambient viscosities. This approach has not yet been shown explicitly, however. When the ratio is not unity, the continuity of the stress makes the velocity gradient discontinuous across the domain perimeter in the membrane. On the other hand, the velocity gradient is continuous in the ambient fluids, whose velocity field should agree with that of the membrane as the spatial point approaches the membrane. This means that we need to assume dipole singularity along the domain perimeter in solving the governing equations unless the ratio is unity. In the present study, we take this singularity into account and obtain the drag coefficient of a liquid domain as a power series with respect to a dimensionless parameter, which equals zero when the ratio is unity and approaches unity when the ratio tends to infinity. As the parameter increases to unity, the sum of the series is numerically shown to approach the drag coefficient of the disk.
AB - We calculate the drag coefficient of a circular liquid domain in a flat fluid membrane surrounded by three-dimensional fluids on both sides. The coefficient of a rigid disk is well known, while that of a circular liquid domain is also well known when the membrane viscosity inside the domain equals the one outside the domain. As the ratio of the former viscosity to the latter increases to infinity, the drag coefficient of a liquid domain should approach that of the disk of the same size in the same ambient viscosities. This approach has not yet been shown explicitly, however. When the ratio is not unity, the continuity of the stress makes the velocity gradient discontinuous across the domain perimeter in the membrane. On the other hand, the velocity gradient is continuous in the ambient fluids, whose velocity field should agree with that of the membrane as the spatial point approaches the membrane. This means that we need to assume dipole singularity along the domain perimeter in solving the governing equations unless the ratio is unity. In the present study, we take this singularity into account and obtain the drag coefficient of a liquid domain as a power series with respect to a dimensionless parameter, which equals zero when the ratio is unity and approaches unity when the ratio tends to infinity. As the parameter increases to unity, the sum of the series is numerically shown to approach the drag coefficient of the disk.
KW - drops
KW - membranes
UR - http://www.scopus.com/inward/record.url?scp=85039735573&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85039735573&partnerID=8YFLogxK
U2 - 10.1017/jfm.2017.819
DO - 10.1017/jfm.2017.819
M3 - Article
AN - SCOPUS:85039735573
SN - 0022-1120
VL - 836
SP - 910
EP - 931
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -