Dualities for the Domany-Kinzel model

Makoto Katori, Norio Konno, Aidan Sudbury, Hideki Tanemura

研究成果: Article査読

6 被引用数 (Scopus)

抄録

We study the Domany-Kinzel model, which is a class of discrete-time Markov processes in one-dimension with two parameters (P1, P2) ∈ [0, 1]2. When P1 = αβ and P2 = α(2β-β2) with (α, β) ∈ [0, 1] 2, the process can be identified with the mixed site-bond oriented percolation model on a square lattice with probabilities α of a site being open and β of a bond being open. This paper treats dualities for the Domany-Kinzel model ξtA and the DKdual ηtA starting from A. We prove that (i) E(x |ξtA ∩ B|) = E(x|ξtB ∩ A|) if x = 1-(2P 1-P2)/P12, (ii) E(x |ξtA ∩ B|) = E(x|ηtB ∩ A|) if x = 1-(2P1-P2)/P1, and (iii) E(x |ηtA ∩ B|) = E(x|ηtB ∩ A|) if x = 1-(2P1-P2), as long as one of A, B is finite and P 2 ≤ P1.

本文言語English
ページ(範囲)131-144
ページ数14
ジャーナルJournal of Theoretical Probability
17
1
DOI
出版ステータスPublished - 2004 1月
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 数学 (全般)
  • 統計学、確率および不確実性

フィンガープリント

「Dualities for the Domany-Kinzel model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル