Dynamic Dual Sparse Topic Model: Integrating Temporal Dynamics and Sparsity with Spike and Slab Priors into Topic Model

Tatsuki Masuda, Kei Nakagawa, Takahiro Hoshino

研究成果: Conference contribution

抄録

Topic modeling is a statistical technique that identifies underlying abstract 'topics' in a corpus of texts. Notable among current topic modeling methodologies are the Dynamic Topic Model (DTM), which captures the temporal dynamics of topics, and the Dynamic Sparse Model (DSM), which emphasizes the sparsity in the distributions of topics and words. However, no existing model appropriately integrates both the temporal progression and the sparsity within these distributions. Therefore, in this study, we propose the Dynamic Dual Sparse Topic Model (DDSTM), which employs the Spike and Slab Prior as its prior distribution, thereby extending the capabilities of both DTM and DSM. The DDSTM is distinct in its ability to simultaneously manage the temporal dynamics and sparsity in topic distributions, significantly enhancing the model's interpretability. Theoretically, we prove that the DDSTM maintains the same level of sparsity as the existing DSM models. In the empirical analysis, we use real-world text data to examine the characteristics of the DDSTM compared to existing topic models.

本文言語English
ホスト出版物のタイトルProceedings - 2024 16th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ページ299-304
ページ数6
ISBN(電子版)9798350377903
DOI
出版ステータスPublished - 2024
イベント16th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2024 - Takamatsu, Japan
継続期間: 2024 7月 62024 7月 12

出版物シリーズ

名前Proceedings - 2024 16th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2024

Conference

Conference16th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2024
国/地域Japan
CityTakamatsu
Period24/7/624/7/12

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 情報システムおよび情報管理

フィンガープリント

「Dynamic Dual Sparse Topic Model: Integrating Temporal Dynamics and Sparsity with Spike and Slab Priors into Topic Model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル