Edge proximity and matching extension in projective planar graphs

Jun Fujisawa, Hiroki Seno

研究成果: Article査読

3 被引用数 (Scopus)

抄録

A graph (Formula presented.) with at least (Formula presented.) vertices is said to be distance (Formula presented.) (Formula presented.) -extendable if, for any matching (Formula presented.) of (Formula presented.) with (Formula presented.) edges in which the edges lie at distance at least (Formula presented.) pairwise, there exists a perfect matching of (Formula presented.) containing (Formula presented.). In this paper we prove that every 5-connected triangulation on the projective plane of even order is distance 3 7-extendable and distance 4 (Formula presented.) -extendable for any (Formula presented.).

本文言語English
ページ(範囲)341-367
ページ数27
ジャーナルJournal of Graph Theory
95
3
DOI
出版ステータスPublished - 2020 11月 1

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Edge proximity and matching extension in projective planar graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル