Effects of Mn2+ distribution controlled by carboxylic acids on photoluminescence intensity of nanosized ZnS:Mn particles

T. Isobe, T. Igarashi, M. Senna

研究成果: Conference article査読

11 被引用数 (Scopus)

抄録

Addition of methacrylic acid (MA) during preparation of ZnS doped with Mn2+ (ZnS:Mn) increased the photoluminescence (PL) due to 4T1-6A1 transition of Mn2+. According to X-ray fluorescence analysis and electron paramagnetic resonance spectroscopy, ion exchange between Zn2+ and Mn2+ through a preferential dissolution of Mn2+ was promoted by acidic additives. This caused that Mn2+ ions were isolatedly incorporated into ZnS. The X-ray photoelectron spectra show that the intensity of S 2p3/2 peak due to S6+ increased relative to that of S2- by virtue of carboxylic groups. The intensities of PL peaks at 450 and 580 nm, corresponding to polymethacrylic acid and Mn2+, respectively, increased after heating at 80°C for 1 week. We conclude that MA plays important roles on selective leaching to increase the amount of isolated Mn2+ ions, chemical interaction between ZnS:Mn and MA, and energy transfer to Mn2+, leading to the increase in PL intensity.

本文言語English
ページ(範囲)305-310
ページ数6
ジャーナルMaterials Research Society Symposium - Proceedings
452
出版ステータスPublished - 1997 1月 1
イベントProceedings of the 1996 MRS Fall Meeting - Boston, MA, USA
継続期間: 1996 12月 21996 12月 6

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Effects of Mn2+ distribution controlled by carboxylic acids on photoluminescence intensity of nanosized ZnS:Mn particles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル