Efficient Robust Graph Learning Based on Minimax Concave Penalty and ?-Cross Entropy

Tatsuya Koyakumaru, Masahiro Yukawa

研究成果: Conference contribution

抄録

This paper presents an efficient robust method to learn sparse graphs from contaminated data. Specifically, the convex-analytic approach using the minimax concave penalty is formulated using the so-called ?-lasso which exploits the ?-cross entropy. We devise a weighting technique which designs the data weights based on the l1 distance in addition to the Mahalanobis distance for avoiding possible failures of outlier rejection due to the combinatorial graph Laplacian structure. Numerical examples show that the proposed method significantly outperforms ?-lasso and t-lasso as well as the existing non-robust graph learning methods in contaminated situations.

本文言語English
ホスト出版物のタイトル30th European Signal Processing Conference, EUSIPCO 2022 - Proceedings
出版社European Signal Processing Conference, EUSIPCO
ページ1776-1780
ページ数5
ISBN(電子版)9789082797091
出版ステータスPublished - 2022
イベント30th European Signal Processing Conference, EUSIPCO 2022 - Belgrade, Serbia
継続期間: 2022 8月 292022 9月 2

出版物シリーズ

名前European Signal Processing Conference
2022-August
ISSN(印刷版)2219-5491

Conference

Conference30th European Signal Processing Conference, EUSIPCO 2022
国/地域Serbia
CityBelgrade
Period22/8/2922/9/2

ASJC Scopus subject areas

  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Efficient Robust Graph Learning Based on Minimax Concave Penalty and ?-Cross Entropy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル