Energy Optimization of Hybrid electric Vehicles Using Deep Q-Network

Takashi Yokoyama, Hiromitsu Ohmori

研究成果: Conference contribution

抄録

Hybrid electric vehicles are positioned as an intermediate form between gasoline and electric vehicles, contributing to lower fuel consumption and emissions. Map control is used for conventional engine control. This method maps optimal values from experimental data, and it has been pointed out that the capacity of the map is increasing and that it is difficult to respond to increasingly sophisticated control objectives. In this paper, we first present a model of a series-parallel hybrid electric vehicle and propose a method using Deep Q-Network, a typical reinforcement learning technique. Through numerical simulation, we verify that the SOC is within an acceptable range throughout the entire run and that energy efficiency can be improved compared to existing map control.

本文言語English
ホスト出版物のタイトル2022 61st Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ827-832
ページ数6
ISBN(電子版)9784907764784
DOI
出版ステータスPublished - 2022
イベント61st Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2022 - Kumamoto, Japan
継続期間: 2022 9月 62022 9月 9

出版物シリーズ

名前2022 61st Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2022

Conference

Conference61st Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2022
国/地域Japan
CityKumamoto
Period22/9/622/9/9

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • 制御およびシステム工学
  • 制御と最適化
  • 器械工学

フィンガープリント

「Energy Optimization of Hybrid electric Vehicles Using Deep Q-Network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル