Enhanced Model-Free Dynamic State Estimation for a Soft Robot Finger Using an Embedded Optical Waveguide Sensor

Henrik Krauss, Kenjiro Takemura

研究成果: Article査読

1 被引用数 (Scopus)

抄録

In this letter, an advanced stretchable optical waveguide sensor is implemented into a multidirectional PneuNet soft actuator to enhance dynamic state estimation through a NARX neural network. The stretchable waveguide featuring a semidivided core design from previous work is sensitive to multiple strain modes. It is integrated into a soft finger actuator with two pressure chambers that replicates human finger motions. The soft finger, designed for applications in soft robotic grippers or hands, is viewed in isolation under pneumatic actuation controlled by motorized linear stages. The research first characterizes the soft finger's workspace and sensor response. Subsequently, three dynamic state estimators are developed using NARX architecture, differing in the degree of incorporating the optical waveguide sensor response. Evaluation on a testing path reveals that the full sensor response significantly improves end effector position estimation, reducing mean error by 51% from 5.70 mm to 2.80 mm, compared to only 21% improvement to 4.53 mm using the estimator representing a single core waveguide design. The letter concludes by discussing the application of these estimators for (open-loop) model-predictive control and recommends future focus on advanced, structured soft (optical) sensors for model-free state estimation and control of soft robots.

本文言語English
ページ(範囲)6123-6129
ページ数7
ジャーナルIEEE Robotics and Automation Letters
9
7
DOI
出版ステータスPublished - 2024 7月 1

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 生体医工学
  • 人間とコンピュータの相互作用
  • 機械工学
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用
  • 制御と最適化
  • 人工知能

フィンガープリント

「Enhanced Model-Free Dynamic State Estimation for a Soft Robot Finger Using an Embedded Optical Waveguide Sensor」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル