Enhanced Residual Fourier Transformation Network for Lightweight Image Super-resolution

Yunming Yang, Masaaki Ikehara

研究成果: Conference contribution

抄録

Residual blocks have been widely used in the single image super-resolution (SR), boosting the performance of SR results. The stacking of residual blocks helps to grab more information needed for the recovery of high-resolution (HR) images, but at the cost of larger model size and computational complexity. To address this problem, we propose a lightweight enhanced residual fourier transformation network (ERFTN). To ensure the network is lightweight enough while being capable of capturing both spatial and frequency information, we introduce a novel enhanced residual fourier transformation block (ERFTB) with an enhanced spatial attention (ESA) block. In addition, we adopt the contrastive loss for training acceleration without additional parameters. Extensive experiments demonstrate that our method can achieve SR performance superior to the state-of-the-art SR methods while reducing approximately half of the number of parameters (e.g., with 190K number of parameters, achieving 32.39dB in PSNR on Urban100 dataset).

本文言語English
ホスト出版物のタイトル2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ826-832
ページ数7
ISBN(電子版)9798350300673
DOI
出版ステータスPublished - 2023
イベント2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023 - Taipei, Taiwan, Province of China
継続期間: 2023 10月 312023 11月 3

出版物シリーズ

名前2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023

Conference

Conference2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023
国/地域Taiwan, Province of China
CityTaipei
Period23/10/3123/11/3

ASJC Scopus subject areas

  • ハードウェアとアーキテクチャ
  • 信号処理
  • 人工知能
  • コンピュータ サイエンスの応用

フィンガープリント

「Enhanced Residual Fourier Transformation Network for Lightweight Image Super-resolution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル