Entropy-regularized optimal transport on multivariate normal and q-normal distributions

Qijun Tong, Kei Kobayashi

研究成果: Article査読

1 被引用数 (Scopus)

抄録

The distance and divergence of the probability measures play a central role in statistics, machine learning, and many other related fields. The Wasserstein distance has received much attention in recent years because of its distinctions from other distances or divergences. Although computing the Wasserstein distance is costly, entropy-regularized optimal transport was proposed to computationally efficiently approximate the Wasserstein distance. The purpose of this study is to understand the theoretical aspect of entropy-regularized optimal transport. In this paper, we focus on entropy-regularized optimal transport on multivariate normal distributions and q-normal distributions. We obtain the explicit form of the entropy-regularized optimal transport cost on multivariate normal and q-normal distributions; this provides a perspective to understand the effect of entropy regularization, which was previously known only experimentally. Furthermore, we obtain the entropy-regularized Kantorovich estimator for the probability measure that satisfies certain conditions. We also demonstrate how the Wasserstein distance, optimal coupling, geometric structure, and statistical efficiency are affected by entropy regularization in some experiments. In particular, our results about the explicit form of the optimal coupling of the Tsallis entropy-regularized optimal transport on multivariate q-normal distributions and the entropy-regularized Kantorovich estimator are novel and will become the first step towards the understanding of a more general setting.

本文言語English
論文番号302
ページ(範囲)1-20
ページ数20
ジャーナルEntropy
23
3
DOI
出版ステータスPublished - 2021 3月

ASJC Scopus subject areas

  • 情報システム
  • 数理物理学
  • 物理学および天文学(その他)
  • 電子工学および電気工学

フィンガープリント

「Entropy-regularized optimal transport on multivariate normal and q-normal distributions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル