TY - JOUR
T1 - ERK and p38 MAPK, but not NF-κB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts
AU - Sano, Motoaki
AU - Fukuda, Keiichi
AU - Sato, Toshihiko
AU - Kawaguchi, Haruko
AU - Suematsu, Makoto
AU - Matsuda, Satoshi
AU - Koyasu, Shigeo
AU - Matsui, Hideo
AU - Yamauchi-Takihara, Keiko
AU - Harada, Masaki
AU - Saito, Yoshihiko
AU - Ogawa, Satoshi
PY - 2001/10/12
Y1 - 2001/10/12
N2 - We recently reported that angiotensin II (Ang II) induced IL-6 mRNA expression in cardiac fibroblasts, which played an important role in Ang II-induced cardiac hypertrophy in paracrine fashion. The present study investigated the regulatory mechanism of Ang II-induced IL-6 gene expression, focusing especially on reactive oxygen species (ROS)-mediated signaling in cardiac fibroblasts. Ang II increased intracellular ROS in cardiac fibroblasts, and the increase was completely inhibited by the AT-1 blocker candesartan and the NADH/NADPH oxidase inhibitor diphenyleneiodonium (DPI). We first confirmed that antioxidant N-acetylcysteine, superoxide scavenger Tiron, and DPI suppressed Ang II-induced IL-6 expression. Because we observed that exogenous H2O2 also increased IL-6 mRNA, the signaling pathways downstream of Ang II and exogenous H2O2 were compared. Ang II, as well as exogenous H2O2, activated ERK, p38 MAPK, and JNK, which were significantly inhibited by N-acetylcysteine and DPI. In contrast with exogenous H2O2, however, Ang II did not influence phosphorylation and degradation of IκB-α/β or nuclear translocation of p65, nor did it increase NF-κB promoter activity. PD98059 and SB203580 inhibited Ang II-induced IL-6 expression. Truncation and mutational analysis of the IL-6 gene promoter showed that CRE was an important cis-element in Ang II-induced IL-6 gene expression. NF-κB-binding site was important for the basal expression of IL-6, but was not activated by Ang II. Ang II phosphorylated CREB through the ERK and p38 MAPK pathway in a ROS-sensitive manner. Collectively, these data indicated that Ang II stimulated ROS production via the AT1 receptor and NADH/NADPH oxidase, and that these ROS mediated activation of MAPKs, which culminated in IL-6 gene expression through a CRE-dependent, but not NF-κB-dependent, pathway in cardiac fibroblasts.
AB - We recently reported that angiotensin II (Ang II) induced IL-6 mRNA expression in cardiac fibroblasts, which played an important role in Ang II-induced cardiac hypertrophy in paracrine fashion. The present study investigated the regulatory mechanism of Ang II-induced IL-6 gene expression, focusing especially on reactive oxygen species (ROS)-mediated signaling in cardiac fibroblasts. Ang II increased intracellular ROS in cardiac fibroblasts, and the increase was completely inhibited by the AT-1 blocker candesartan and the NADH/NADPH oxidase inhibitor diphenyleneiodonium (DPI). We first confirmed that antioxidant N-acetylcysteine, superoxide scavenger Tiron, and DPI suppressed Ang II-induced IL-6 expression. Because we observed that exogenous H2O2 also increased IL-6 mRNA, the signaling pathways downstream of Ang II and exogenous H2O2 were compared. Ang II, as well as exogenous H2O2, activated ERK, p38 MAPK, and JNK, which were significantly inhibited by N-acetylcysteine and DPI. In contrast with exogenous H2O2, however, Ang II did not influence phosphorylation and degradation of IκB-α/β or nuclear translocation of p65, nor did it increase NF-κB promoter activity. PD98059 and SB203580 inhibited Ang II-induced IL-6 expression. Truncation and mutational analysis of the IL-6 gene promoter showed that CRE was an important cis-element in Ang II-induced IL-6 gene expression. NF-κB-binding site was important for the basal expression of IL-6, but was not activated by Ang II. Ang II phosphorylated CREB through the ERK and p38 MAPK pathway in a ROS-sensitive manner. Collectively, these data indicated that Ang II stimulated ROS production via the AT1 receptor and NADH/NADPH oxidase, and that these ROS mediated activation of MAPKs, which culminated in IL-6 gene expression through a CRE-dependent, but not NF-κB-dependent, pathway in cardiac fibroblasts.
KW - Angiotensin II
KW - Cardiac fibroblast
KW - Interleukin-6
KW - Mitogen-activated protein kinase
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=0035851208&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035851208&partnerID=8YFLogxK
U2 - 10.1161/hh2001.098873
DO - 10.1161/hh2001.098873
M3 - Article
C2 - 11597988
AN - SCOPUS:0035851208
SN - 0009-7330
VL - 89
SP - 661
EP - 669
JO - Circulation research
JF - Circulation research
IS - 8
ER -