Establishment of novel embryonic stem cell lines derived from the common marmoset (Callithrix jacchus)

Erika Sasaki, Kisaburo Hanazawa, Ryo Kurita, Akira Akatsuka, Takahito Yoshizaki, Hajime Ishii, Yoshikuni Tanioka, Yasuyuki Ohnishi, Hiroshi Suemizu, Ayako Sugawara, Norikazu Tamaoki, Kiyoko Izawa, Yukoh Nakazaki, Hiromi Hamada, Hirofumi Suemori, Shigetaka Asano, Norio Nakatsuji, Hideyuki Okano, Kenzaburo Tani

研究成果: Article査読

139 被引用数 (Scopus)

抄録

The successful establishment of human embryonic stem cell (hESC) lines has inaugurated a new era in regenerative medicine by facilitating the transplantation of differentiated ESCs to specific organs. However, problems with the safety and efficacy of hESC therapy in vivo remain to be resolved. Preclinical studies using animal model systems, including nonhuman primates, are essential to evaluate the safety and efficacy of hESC therapies. Previously, we demonstrated that common marmosets are suitable laboratory animal models for preclinical studies of hematopoietic stem cell therapies. As this animal model is also applicable to preclinical trials of ESC therapies, we have established novel common marmoset ESC (CMESC) lines. To obtain marmoset embryos, we developed a new embryo collection system, in which blastocysts can be obtained every 3 weeks from each marmoset pair. The inner cell mass was isolated by immunosurgery and plated on a mouse embryonic feeder layer. Some of the CMESC lines were cultured continuously for more than 1 year. These CMESC lines showed alkaline phosphatase activity and expressed stage-specific embryonic antigen (SSEA)-S, SSEA-4, TRA-1-60, and TRA-1-81. On the other hand, SSEA-1 was notdetected. Furthermore, our novel CMESCs are pluripotent, as evidenced by in vivo teratoma formation in immunodeficient mice and in vitro differentiation experiments. Our established CMESC lines and the common marmoset provide an excellent experimental model system for understanding differentiation mechanisms, as well as the development of regenerative therapies using hESCs.

本文言語English
ページ(範囲)1304-1313
ページ数10
ジャーナルStem Cells
23
9
DOI
出版ステータスPublished - 2005 10月

ASJC Scopus subject areas

  • 分子医療
  • 発生生物学
  • 細胞生物学

フィンガープリント

「Establishment of novel embryonic stem cell lines derived from the common marmoset (Callithrix jacchus)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル