Evaluation methodology of gas permeable characterization in a polymer-based microfluidic device by confocal fluorescence imaging

Mitsuhisa Ichiyanagi, Keita Sakai, Shinya Kidani, Yasuhiro Kakinuma, Yohei Sato, Koichi Hishida

研究成果: Article査読

9 被引用数 (Scopus)

抄録

The evaluation technique of gas permeable characterization has been developed for an increased efficiency of gasliquid chemical reactions and high accuracy of environmental diagnosis. This technique enables us to measure spatial distributions of velocity and dissolved gas concentration by utilizing confocal micron-resolution particle image velocimetry combined with a laser-induced fluorescence technique. Microfluidic devices with gas permeability through polymer membranes are composed of a cover glass and a polydimethylsiloxane (PDMS) chip with the ability to permeate various gases, since PDMS is an elastomeric material. In the chip, microchannels are manufactured using a cryogenic micromachining system. The gas permeation is dominated by several factors, such as the gas and liquid flow rates, the membrane thickness between the gas and liquid flow, and the surface area of the membranes. The advantage of the present device is to realize the control of gas permeability by changing the surface roughness of PDMS, because the cryogenic micromachining enables us to control the surface roughness of microchannels and an increase in roughness yields an increase in the surface area of membranes. The experiments were performed under several conditions with a change in the gas flow rate, the PDMS membrane thickness and the surface roughness, which affect the gas permeation phenomena. The spatial distributions of velocity and dissolved gas concentration were measured in the liquid flow fields. The results indicate that the velocity-vector distributions have similar patterns under all experimental conditions, while the dissolved gas concentration distributions have different patterns. It was observed that the gas permeability through PDMS membranes increased with an increase in gas flow rates and surface roughness and with a decrease in membrane thicknesses, which is in qualitative agreement with membrane theory. The important conclusion is that the proposed technique is suggested to have the possibility of evaluating the characterization of gas permeable microfluidic device through membranes.

本文言語English
論文番号065023
ジャーナルJournal of Micromechanics and Microengineering
22
6
DOI
出版ステータスPublished - 2012 6月

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 材料力学
  • 機械工学
  • 電子工学および電気工学

フィンガープリント

「Evaluation methodology of gas permeable characterization in a polymer-based microfluidic device by confocal fluorescence imaging」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル