TY - GEN
T1 - Experimental Clarification on Detonation Phenomena of Liquid Ethanol Rotating Detonation Combustor
AU - Yoneyama, Kentaro
AU - Ishihara, Kazuki
AU - Ito, Shiro
AU - Watanabe, Hiroaki
AU - Itouyama, Noboru
AU - Kawasaki, Akira
AU - Matsuoka, Ken
AU - Kasahara, Jiro
AU - Matsuo, Akiko
AU - Funaki, Ikkoh
N1 - Publisher Copyright:
© 2022, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Rotating detonation combustion was successfully tested for liquid ethanol and gaseous oxygen heterogeneous mixture in a cylindrical combustor for the first time. The rotating detonation combustor (RDC) we operated has a diameter of 20 mm and variable lengths of 60, 210 mm. Pure ethanol and industrial ethanol were selected as liquid fuels. Under the conditions of ethanol and oxygen mass flow rate of 26-40 g/s, equivalence ratio of 0.4-1.7, and backpressure of 10-17 kPa, we confirmed detonation combustion and deflagration combustion. In detonation combustion, as the ethanol manifold supply temperature increases, the detonation propagation speeds, and luminance of combustion were enhanced. It is possible to say enhanced evaporation behavior resulted in stable detonation and showed high peaks in luminance value. Utilizing the control surface method to evaluate experimental thrust, estimated thrust showed good agreement with experimental thrust. For liquid-fueled cylindrical RDCs, the control surface methods can also be used to evaluate thrust.
AB - Rotating detonation combustion was successfully tested for liquid ethanol and gaseous oxygen heterogeneous mixture in a cylindrical combustor for the first time. The rotating detonation combustor (RDC) we operated has a diameter of 20 mm and variable lengths of 60, 210 mm. Pure ethanol and industrial ethanol were selected as liquid fuels. Under the conditions of ethanol and oxygen mass flow rate of 26-40 g/s, equivalence ratio of 0.4-1.7, and backpressure of 10-17 kPa, we confirmed detonation combustion and deflagration combustion. In detonation combustion, as the ethanol manifold supply temperature increases, the detonation propagation speeds, and luminance of combustion were enhanced. It is possible to say enhanced evaporation behavior resulted in stable detonation and showed high peaks in luminance value. Utilizing the control surface method to evaluate experimental thrust, estimated thrust showed good agreement with experimental thrust. For liquid-fueled cylindrical RDCs, the control surface methods can also be used to evaluate thrust.
UR - http://www.scopus.com/inward/record.url?scp=85123598690&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123598690&partnerID=8YFLogxK
U2 - 10.2514/6.2022-1454
DO - 10.2514/6.2022-1454
M3 - Conference contribution
AN - SCOPUS:85123598690
SN - 9781624106316
T3 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
BT - AIAA SciTech Forum 2022
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
Y2 - 3 January 2022 through 7 January 2022
ER -