EXTERNAL DIVISION OF TWO PROXIMITY OPERATORS: AN APPLICATION TO SIGNAL RECOVERY WITH STRUCTURED SPARSITY

Kyohei Suzuki, Masahiro Yukawa

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

This paper studies the external division operator, an external division (an affine combination with positive and negative weights) of two proximity operators. We show that the external division operator is cocoercive under some condition, and it can be expressed as the proximity operator of a certain weakly convex function. We then consider using the external division operator as an alternative to the proximity operator in the proximal gradient algorithm, which we show converges to a minimizer of the cost function penalized by the weakly convex function under some conditions. Our analysis covers the case when the fidelity function is convex but not strongly convex. In simulations, we employ the octagonal shrinkage and clustering algorithm for regression in the external division operator, and we show that significant improvements are attained in signal recovery with structured sparsity in both overdetermined and underdetermined cases.

本文言語English
ホスト出版物のタイトル2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ9471-9475
ページ数5
ISBN(電子版)9798350344851
DOI
出版ステータスPublished - 2024
イベント2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, Korea, Republic of
継続期間: 2024 4月 142024 4月 19

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN(印刷版)1520-6149

Conference

Conference2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
国/地域Korea, Republic of
CitySeoul
Period24/4/1424/4/19

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「EXTERNAL DIVISION OF TWO PROXIMITY OPERATORS: AN APPLICATION TO SIGNAL RECOVERY WITH STRUCTURED SPARSITY」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル