Fabrication and current-voltage characteristics of Ni spin quantum cross devices with P3HT:PCBM organic materials

Hideo Kaiju, Kenji Kondo, Nubla Basheer, Nobuyoshi Kawaguchi, Susanne White, Akihiko Hirata, Manabu Ishimaru, Yoshihiko Hirotsu, Akira Ishibashi

研究成果: Conference contribution


We have proposed spin quantum cross (SQC) devices, in which organic materials are sandwiched between two edges of magnetic thin films whose edges are crossed, towards the realization of novel beyond-CMOS switching devices. In SQC devices, nanometer-size junctions can be produced since the junction area is determined by the film thickness. In this study, we have fabricated Ni SQC devices with poly-3-hexylthiophene (P3HT): 6, 6-phenyl C61-butyric acid methyl ester (PCBM) organic materials and investigated the current-voltage (I-V) characteristics experimentally and theoretically. As a result of I-V measurements, ohmic I-V characteristics have been obtained at room temperature for Ni SQC devices with P3HT:PCBM organic materials, where the junction area is as small as 16 nm x 16 nm. This experimental result shows quantitative agreement with the theoretical calculation results performed within the framework of the Anderson model under the strong coupling limit. Our calculation also shows that a high onZoff ratio beyond 10000:1 can be obtained in Ni SQC devices with P3HT:PCBM organic materials under the weak coupling condition.

ホスト出版物のタイトルMaterials and Devices for End-of-Roadmap and Beyond CMOS Scaling
出版社Materials Research Society
出版ステータスPublished - 2010


名前Materials Research Society Symposium Proceedings

ASJC Scopus subject areas

  • 材料科学一般
  • 凝縮系物理学
  • 材料力学
  • 機械工学


「Fabrication and current-voltage characteristics of Ni spin quantum cross devices with P3HT:PCBM organic materials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。