Face detection through compact classifier using adaptive look-up-table

Yuya Hanai, Tadahiro Kuroda

    研究成果: Conference contribution

    1 被引用数 (Scopus)

    抄録

    Face detection has been well studied in terms of accuracy and speed. However, required memory size reduction is still poorly studied, which is becoming a critical issue as platforms for face detection go tiny. In this paper, we propose a novel compact weak classifier using Adaptive Look-Up-Table (ALUT) for face detection on resource-constrained devices such as wearable sensor nodes. ALUT gives good approximation of log-likelihood [3] with fewer data, thus enabling the drastic reduction of classifier data size, keeping high accuracy and low computation cost. To generate an optimal ALUT, a new cost function called Weighted Sum of Absolute Difference (WSAD) is also proposed for further improvement. In our experiment, the classifier data size is reduced by 43% and the computation cost is reduced by 15% with same accuracy, compared to a conventional fixed LUT classifier.

    本文言語English
    ホスト出版物のタイトル2009 IEEE International Conference on Image Processing, ICIP 2009 - Proceedings
    出版社IEEE Computer Society
    ページ1225-1228
    ページ数4
    ISBN(印刷版)9781424456543
    DOI
    出版ステータスPublished - 2009 1月 1
    イベント2009 IEEE International Conference on Image Processing, ICIP 2009 - Cairo, Egypt
    継続期間: 2009 11月 72009 11月 10

    出版物シリーズ

    名前Proceedings - International Conference on Image Processing, ICIP
    ISSN(印刷版)1522-4880

    Other

    Other2009 IEEE International Conference on Image Processing, ICIP 2009
    国/地域Egypt
    CityCairo
    Period09/11/709/11/10

    ASJC Scopus subject areas

    • ソフトウェア
    • コンピュータ ビジョンおよびパターン認識
    • 信号処理

    フィンガープリント

    「Face detection through compact classifier using adaptive look-up-table」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル