抄録
Nutritional status potentially influences immune responses; however, how nutritional signals regulate cellular dynamics and functionality remains obscure. Herein, we report that temporary fasting drastically reduces the number of lymphocytes by ∼50% in Peyer's patches (PPs), the inductive site of the gut immune response. Subsequent refeeding seemingly restored the number of lymphocytes, but whose cellular composition was conspicuously altered. A large portion of germinal center and IgA+ B cells were lost via apoptosis during fasting. Meanwhile, naive B cells migrated from PPs to the bone marrow during fasting and then back to PPs during refeeding when stromal cells sensed nutritional signals and upregulated CXCL13 expression to recruit naive B cells. Furthermore, temporal fasting before oral immunization with ovalbumin abolished the induction of antigen-specific IgA, failed to induce oral tolerance, and eventually exacerbated food antigen-induced diarrhea. Thus, nutritional signals are critical in maintaining gut immune homeostasis. Temporary fasting drastically reduces the levels of B cells in Peyer's patches, with germinal center B cells undergoing apoptosis and naive cells migrating to the bone marrow and only egressing upon refeeding.
本文言語 | English |
---|---|
ページ(範囲) | 1072-1087.e14 |
ジャーナル | Cell |
巻 | 178 |
号 | 5 |
DOI | |
出版ステータス | Published - 2019 8月 22 |
ASJC Scopus subject areas
- 生化学、遺伝学、分子生物学一般