Feasibility study on real-time viscosity monitoring by miniaturized optical viscosity sensor

Hiroshi Abe, Ryusuke Nagamachi, Yoshihiro Taguchi, Yuji Nagasaka

研究成果: Article査読


A new viscosity sensor enabling non-contact measurement at high speed, with less sample volume and high stability is required in a broad field. For example, in the industrial field, process control by in situ measurement of viscosity can enhance quality and process yield of ink, paint and coating films. Therefore, we have developed a new miniaturized optical viscosity sensor, namely MOVS (Miniaturized Optical Viscosity Sensor), based on a laser-induced capillary wave (LiCW) method which can meet the requirements above. MOVS measures viscosity by observing damping oscillation of laser-induced capillary wave (LiCW), which is generated by an interference of two excitation laser beams on a liquid surface. MOVS consists of five U-grooves fabricated by MEMS process and optical fibers. The newly integrated optical surface tracking system makes possible the stable viscosity measurement under external disturbances such as vibration and evaporation. In this study, by integrating the optical surface tracking system, nanosecond damping oscillation of LiCW is successfully observed in the presence of external forced vibration drying process of a liquid film (thickness of hundreds micrometer order).

ジャーナルNihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C
出版ステータスPublished - 2010 8月

ASJC Scopus subject areas

  • 材料力学
  • 機械工学
  • 産業および生産工学


「Feasibility study on real-time viscosity monitoring by miniaturized optical viscosity sensor」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。