Fermionic solutions of chiral Gross-Neveu and Bogoliubov-de Gennes systems in nonlinear Schrödinger hierarchy

Daisuke A. Takahashi, Shunji Tsuchiya, Ryosuke Yoshii, Muneto Nitta

研究成果: Article査読

22 被引用数 (Scopus)

抄録

The chiral Gross-Neveu model or equivalently the linearized Bogoliubov-de Gennes equation has been mapped to the nonlinear Schrödinger (NLS) hierarchy in the Ablowitz-Kaup-Newell-Segur formalism by Correa, Dunne and Plyushchay. We derive the general expression for exact fermionic solutions for all gap functions in the arbitrary order of the NLS hierarchy. We also find that the energy spectrum of the n-th NLS hierarchy generally has n+. 1 gaps. As an illustration, we present the self-consistent two-complex-kink solution with four real parameters and two fermion bound states. The two kinks can be placed at any position and have phase shifts. When the two kinks are well separated, the fermion bound states are localized around each kink in most parameter region. When two kinks with phase shifts close to each other are placed at distance as short as possible, the both fermion bound states have two peaks at the two kinks, i.e., the delocalization of the bound states occurs.

本文言語English
ページ(範囲)632-637
ページ数6
ジャーナルPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
718
2
DOI
出版ステータスPublished - 2012 12月 5

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学

フィンガープリント

「Fermionic solutions of chiral Gross-Neveu and Bogoliubov-de Gennes systems in nonlinear Schrödinger hierarchy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル