Fluid interfacial energy drives the emergence of three-dimensional periodic structures in micropillar scaffolds

Hiroki Yasuga, Emre Iseri, Xi Wei, Kerem Kaya, Giacomo Di Dio, Toshihisa Osaki, Koki Kamiya, Polyxeni Nikolakopoulou, Sebastian Buchmann, Johan Sundin, Shervin Bagheri, Shoji Takeuchi, Anna Herland, Norihisa Miki, Wouter van der Wijngaart

研究成果: Article査読

10 被引用数 (Scopus)


Structures that are periodic on a microscale in three dimensions are abundant in nature, for example, in the cellular arrays that make up living tissue. Such structures can also be engineered, appearing in smart materials1–4, photonic crystals5, chemical reactors6, and medical7 and biomimetic8 technologies. Here we report that fluid–fluid interfacial energy drives three-dimensional (3D) structure emergence in a micropillar scaffold. This finding offers a rapid and scalable way of transforming a simple pillar scaffold into an intricate 3D structure that is periodic on a microscale, comprising a solid microscaffold, a dispersed fluid and a continuous fluid. Structures generated with this technique exhibit a set of unique features, including a stationary internal liquid–liquid interface. Using this approach, we create structures with an internal liquid surface in a regime of interest for liquid–liquid catalysis. We also synthesize soft composites in solid, liquid and gas combinations that have previously not been shown, including actuator materials with temperature-tunable microscale pores. We further demonstrate the potential of this method for constructing 3D materials that mimic tissue with an unprecedented level of control, and for microencapsulating human cells at densities that address an unresolved challenge in cell therapy.

ジャーナルNature Physics
出版ステータスPublished - 2021 7月

ASJC Scopus subject areas

  • 物理学および天文学(全般)


「Fluid interfacial energy drives the emergence of three-dimensional periodic structures in micropillar scaffolds」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。