抄録
Recently, Jewson and Rossell proposed a new approach for kernel density estimation using an exponentiated form of kernel density estimators. The density estimator contained two hyperparameters that flexibly controls the smoothness of the resulting density. We tune them in a data-driven manner by minimizing an objective function based on the Hyvärinen score to avoid the optimization involving the intractable normalizing constant caused by the exponentiation. We show the asymptotic properties of the proposed estimator and emphasize the importance of including the two hyperparameters for flexible density estimation. Our simulation studies and application to income data show that the proposed density estimator is promising when the underlying density is multi-modal or when observations contain outliers.
本文言語 | English |
---|---|
ページ(範囲) | 110-121 |
ページ数 | 12 |
ジャーナル | Journal of Business and Economic Statistics |
巻 | 43 |
号 | 1 |
DOI | |
出版ステータス | Published - 2025 |
外部発表 | はい |
ASJC Scopus subject areas
- 統計学および確率
- 社会科学(その他)
- 経済学、計量経済学
- 統計学、確率および不確実性