Fully Data-Driven Normalized and Exponentiated Kernel Density Estimator with Hyvärinen Score

Shunsuke Imai, Takuya Koriyama, Shouto Yonekura, Shonosuke Sugasawa, Yoshihiko Nishiyama

研究成果: Article査読

抄録

Recently, Jewson and Rossell proposed a new approach for kernel density estimation using an exponentiated form of kernel density estimators. The density estimator contained two hyperparameters that flexibly controls the smoothness of the resulting density. We tune them in a data-driven manner by minimizing an objective function based on the Hyvärinen score to avoid the optimization involving the intractable normalizing constant caused by the exponentiation. We show the asymptotic properties of the proposed estimator and emphasize the importance of including the two hyperparameters for flexible density estimation. Our simulation studies and application to income data show that the proposed density estimator is promising when the underlying density is multi-modal or when observations contain outliers.

本文言語English
ページ(範囲)110-121
ページ数12
ジャーナルJournal of Business and Economic Statistics
43
1
DOI
出版ステータスPublished - 2025
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 社会科学(その他)
  • 経済学、計量経済学
  • 統計学、確率および不確実性

フィンガープリント

「Fully Data-Driven Normalized and Exponentiated Kernel Density Estimator with Hyvärinen Score」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル