Gibbs Sampler for Matrix Generalized Inverse Gaussian Distributions

Yasuyuki Hamura, Kaoru Irie, Shonosuke Sugasawa

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Sampling from matrix generalized inverse Gaussian (MGIG) distributions is required in Markov chain Monte Carlo (MCMC) algorithms for a variety of statistical models. However, an efficient sampling scheme for the MGIG distributions has not been fully developed. We here propose a novel blocked Gibbs sampler for the MGIG distributions based on the Cholesky decomposition. We show that the full conditionals of the entries of the diagonal and unit lower-triangular matrices are univariate generalized inverse Gaussian and multivariate normal distributions, respectively. Several variants of the Metropolis-Hastings algorithm can also be considered for this problem, but we mathematically prove that the average acceptance rates become extremely low in particular scenarios. We demonstrate the computational efficiency of the proposed Gibbs sampler through simulation studies and data analysis. Supplementary materials for this article are available online.

本文言語English
ページ(範囲)331-340
ページ数10
ジャーナルJournal of Computational and Graphical Statistics
33
2
DOI
出版ステータスPublished - 2024

ASJC Scopus subject areas

  • 統計学および確率
  • 離散数学と組合せ数学
  • 統計学、確率および不確実性

フィンガープリント

「Gibbs Sampler for Matrix Generalized Inverse Gaussian Distributions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル