Goal Inference via Corrective Path Demonstration for Human-Robot Collaboration

Fumiya Ohnishi, Yosuke Kawasaki, Masaki Takahashi

研究成果: Conference contribution

抄録

Recently, collaborative robots, such as collaborative delivery robots, have been expected to improve the work efficiency of users. For natural human-robot collaboration, it is necessary to infer the appropriate goal position to transport instruments, where the user’s convenience and the surrounding environment are considered. In conventional research, the goal is inferred by demonstrating the user’s desired positions, but position demonstration requires many trials to obtain the inference model, which is burdensome for the user. Therefore, we focus on the user’s correction of the robot position and generate multiple position samples from the user’s corrective path. In addition, these position samples are weighted based on the implicit intention of the correction to learn both the desired and undesired positions. Consequently, the robot improves goal inference in fewer trials. The effectiveness of the proposed method was evaluated by experiment that simulated human-robot collaborative environments.

本文言語English
ホスト出版物のタイトルIntelligent Autonomous Systems 17 - Proceedings of the 17th International Conference IAS-17
編集者Ivan Petrovic, Ivan Markovic, Emanuele Menegatti
出版社Springer Science and Business Media Deutschland GmbH
ページ15-28
ページ数14
ISBN(印刷版)9783031222153
DOI
出版ステータスPublished - 2023
イベント17th International Conference on Intelligent Autonomous Systems, IAS-17 - Zagreb, Croatia
継続期間: 2022 6月 132022 6月 16

出版物シリーズ

名前Lecture Notes in Networks and Systems
577 LNNS
ISSN(印刷版)2367-3370
ISSN(電子版)2367-3389

Conference

Conference17th International Conference on Intelligent Autonomous Systems, IAS-17
国/地域Croatia
CityZagreb
Period22/6/1322/6/16

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 信号処理
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Goal Inference via Corrective Path Demonstration for Human-Robot Collaboration」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル