TY - JOUR
T1 - Ground-state phase diagram of a spin-12 frustrated ferromagnetic XXZ chain
T2 - Haldane dimer phase and gapped/gapless chiral phases
AU - Furukawa, Shunsuke
AU - Sato, Masahiro
AU - Onoda, Shigeki
AU - Furusaki, Akira
PY - 2012/9/12
Y1 - 2012/9/12
N2 - The ground-state phase diagram of a spin-12 XXZ chain with competing ferromagnetic nearest-neighbor (J 1<0) and antiferromagnetic second-neighbor (J 20) exchange couplings is studied by means of the infinite time evolving block decimation algorithm and effective field theories. For the SU(2)-symmetric (Heisenberg) case, we show that the nonmagnetic phase in the range -41/J 2<0 has a small but finite ferromagnetic dimer order. We argue that this spontaneous dimer order is associated with effective spin-1 degrees of freedom on dimerized bonds, which collectively form a valence bond solid state as in the spin-1 antiferromagnetic Heisenberg chain (the Haldane spin chain). We thus call this phase the Haldane dimer phase. With easy-plane anisotropy, the model exhibits a variety of phases including the vector chiral phase with gapless excitations and the even-parity dimer and Néel phases with gapped excitations, in addition to the Haldane dimer phase. Furthermore, we show the existence of gapped phases with coexisting orders in narrow regions that intervene between the gapless chiral phase and any one of Haldane dimer, even-parity dimer, and Néel phases. Possible implications for quasi-one-dimensional edge-sharing cuprates are discussed.
AB - The ground-state phase diagram of a spin-12 XXZ chain with competing ferromagnetic nearest-neighbor (J 1<0) and antiferromagnetic second-neighbor (J 20) exchange couplings is studied by means of the infinite time evolving block decimation algorithm and effective field theories. For the SU(2)-symmetric (Heisenberg) case, we show that the nonmagnetic phase in the range -41/J 2<0 has a small but finite ferromagnetic dimer order. We argue that this spontaneous dimer order is associated with effective spin-1 degrees of freedom on dimerized bonds, which collectively form a valence bond solid state as in the spin-1 antiferromagnetic Heisenberg chain (the Haldane spin chain). We thus call this phase the Haldane dimer phase. With easy-plane anisotropy, the model exhibits a variety of phases including the vector chiral phase with gapless excitations and the even-parity dimer and Néel phases with gapped excitations, in addition to the Haldane dimer phase. Furthermore, we show the existence of gapped phases with coexisting orders in narrow regions that intervene between the gapless chiral phase and any one of Haldane dimer, even-parity dimer, and Néel phases. Possible implications for quasi-one-dimensional edge-sharing cuprates are discussed.
UR - http://www.scopus.com/inward/record.url?scp=84866434350&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84866434350&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.86.094417
DO - 10.1103/PhysRevB.86.094417
M3 - Article
AN - SCOPUS:84866434350
SN - 1098-0121
VL - 86
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 9
M1 - 094417
ER -