TY - JOUR
T1 - Gymnasts' Ability to Modulate Sensorimotor Rhythms During Kinesthetic Motor Imagery of Sports Non-specific Movements Superior to Non-gymnasts
AU - Sugino, Hirotaka
AU - Ushiyama, Junichi
N1 - Funding Information:
We thank Ms. Tomomi Hamaoka, Ms. Kana Iijima, and Ms. Chieko Matsuda for their secretarial assistance, and Mr. Hisato Toriyama, Mr. Ryoichiro Yamazaki, Mr. Takuya Ideriha, Ms. Rina Suzuki, and all other members of our laboratory for their useful comments on the work. We thank Mr. Hisashi Mizutori for his practical comments on the work. We thank Benjamin Knight, M.Sc., from Edanz (https://jp.edanz.com/), for editing a draft of this manuscript.
Publisher Copyright:
© Copyright © 2021 Sugino and Ushiyama.
PY - 2021/11/4
Y1 - 2021/11/4
N2 - Previous psychological studies using questionnaires have consistently reported that athletes have superior motor imagery ability, both for sports-specific and for sports-non-specific movements. However, regarding motor imagery of sports-non-specific movements, no physiological studies have demonstrated differences in neural activity between athletes and non-athletes. The purpose of this study was to examine the differences in sensorimotor rhythms during kinesthetic motor imagery (KMI) of sports-non-specific movements between gymnasts and non-gymnasts. We selected gymnasts as an example population because they are likely to have particularly superior motor imagery ability due to frequent usage of motor imagery, including KMI as part of daily practice. Healthy young participants (16 gymnasts and 16 non-gymnasts) performed repeated motor execution and KMI of sports-non-specific movements (wrist dorsiflexion and shoulder abduction of the dominant hand). Scalp electroencephalogram (EEG) was recorded over the contralateral sensorimotor cortex. During motor execution and KMI, sensorimotor EEG power is known to decrease in the α- (8–15 Hz) and β-bands (16–35 Hz), referred to as event-related desynchronization (ERD). We calculated the maximal peak of ERD both in the α- (αERDmax) and β-bands (βERDmax) as a measure of changes in corticospinal excitability. αERDmax was significantly greater in gymnasts, who subjectively evaluated their KMI as being more vivid in the psychological questionnaire. On the other hand, βERDmax was greater in gymnasts only for shoulder abduction KMI. These findings suggest gymnasts' signature of flexibly modulating sensorimotor rhythms with no movements, which may be the basis of their superior ability of KMI for sports-non-specific movements.
AB - Previous psychological studies using questionnaires have consistently reported that athletes have superior motor imagery ability, both for sports-specific and for sports-non-specific movements. However, regarding motor imagery of sports-non-specific movements, no physiological studies have demonstrated differences in neural activity between athletes and non-athletes. The purpose of this study was to examine the differences in sensorimotor rhythms during kinesthetic motor imagery (KMI) of sports-non-specific movements between gymnasts and non-gymnasts. We selected gymnasts as an example population because they are likely to have particularly superior motor imagery ability due to frequent usage of motor imagery, including KMI as part of daily practice. Healthy young participants (16 gymnasts and 16 non-gymnasts) performed repeated motor execution and KMI of sports-non-specific movements (wrist dorsiflexion and shoulder abduction of the dominant hand). Scalp electroencephalogram (EEG) was recorded over the contralateral sensorimotor cortex. During motor execution and KMI, sensorimotor EEG power is known to decrease in the α- (8–15 Hz) and β-bands (16–35 Hz), referred to as event-related desynchronization (ERD). We calculated the maximal peak of ERD both in the α- (αERDmax) and β-bands (βERDmax) as a measure of changes in corticospinal excitability. αERDmax was significantly greater in gymnasts, who subjectively evaluated their KMI as being more vivid in the psychological questionnaire. On the other hand, βERDmax was greater in gymnasts only for shoulder abduction KMI. These findings suggest gymnasts' signature of flexibly modulating sensorimotor rhythms with no movements, which may be the basis of their superior ability of KMI for sports-non-specific movements.
KW - athletes
KW - electroencephalogram (EEG)
KW - event-related desynchronization (ERD)
KW - kinesthetic motor imagery (KMI)
KW - the Kinesthetic and Visual Imagery Questionnaire (KVIQ)
UR - http://www.scopus.com/inward/record.url?scp=85119408529&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119408529&partnerID=8YFLogxK
U2 - 10.3389/fspor.2021.757308
DO - 10.3389/fspor.2021.757308
M3 - Article
AN - SCOPUS:85119408529
SN - 2624-9367
VL - 3
JO - Frontiers in Sports and Active Living
JF - Frontiers in Sports and Active Living
M1 - 757308
ER -