Haken spheres for genus two Heegaard splittings

Sangbum Cho, Yuya Koda

研究成果: Article査読

1 被引用数 (Scopus)

抄録

A manifold which admits a reducible genus-2 Heegaard splitting is one of the 3-sphere, S2 × S1, lens spaces or their connected sums. For each of those splittings, the complex of Haken spheres is defined. When the manifold is the 3-sphere, S2 × S1 or a connected sum whose summands are lens spaces or S2 × S1, the combinatorial structure of the complex has been studied by several authors. In particular, it was shown that those complexes are all contractible. In this work, we study the remaining cases, that is, when the manifolds are lens spaces. We give a precise description of each of the complexes for the genus-2 Heegaard splittings of lens spaces. A remarkable fact is that the complexes for most lens spaces are not contractible and even not connected.

本文言語English
ページ(範囲)563-572
ページ数10
ジャーナルMathematical Proceedings of the Cambridge Philosophical Society
165
3
DOI
出版ステータスPublished - 2018 11月 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Haken spheres for genus two Heegaard splittings」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル