Hamiltonian cycles in 2-tough 2K2-free graphs

Katsuhiro Ota, Masahiro Sanka

研究成果: Article査読

4 被引用数 (Scopus)

抄録

A graph (Formula presented.) is called a (Formula presented.) -free graph if it does not contain (Formula presented.) as an induced subgraph. In 2014, Broersma, Patel, and Pyatkin showed that every 25-tough (Formula presented.) -free graph on at least three vertices is Hamiltonian. Recently, Shan improved this result by showing that 3-tough is sufficient instead of 25-tough. In this paper, we show that every 2-tough (Formula presented.) -free graph on at least three vertices is Hamiltonian, which was conjectured by Gao and Pasechnik.

本文言語English
ページ(範囲)769-781
ページ数13
ジャーナルJournal of Graph Theory
101
4
DOI
出版ステータスPublished - 2022 12月

ASJC Scopus subject areas

  • 幾何学とトポロジー
  • 離散数学と組合せ数学

フィンガープリント

「Hamiltonian cycles in 2-tough 2K2-free graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル