Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core–shell heterojunction nanorods

Sonya Kosar, Yuriy Pihosh, Raman Bekarevich, Kazutaka Mitsuishi, Kazuma Mawatari, Yutaka Kazoe, Takehiko Kitamori, Masahiro Tosa, Alexey B. Tarasov, Eugene A. Goodilin, Yaroslav M. Struk, Michio Kondo, Ivan Turkevych

研究成果: Article査読

23 被引用数 (Scopus)

抄録

Photocatalytic splitting of water under solar light has proved itself to be a promising approach toward the utilization of solar energy and the generation of environmentally friendly fuel in a form of hydrogen. In this work, we demonstrate highly efficient solar-to-hydrogen conversion efficiency of 7.7% by photovoltaic–photoelectrochemical (PV–PEC) device based on hybrid MAPbI3 perovskite PV cell and WO3/BiVO4 core–shell nanorods PEC cell tandem that utilizes spectral splitting approach. Although BiVO4 is characterized by intrinsically high recombination rate of photogenerated carriers, this is not an issue for WO3/BiVO4 core–shell nanorods, where highly conductive WO3 cores are combined with extremely thin absorber BiVO4 shell layer. Since the BiVO4 layer is thinner than the characteristic carrier diffusion length, the photogenerated charge carriers are separated at the WO3/BiVO4 heterojunction before their recombination. Also, such architecture provides sufficient optical thickness even for extremely thin BiVO4 layer due to efficient light trapping in the core–shell WO3/BiVO4 nanorods with high aspect ratio. We also demonstrate that the concept of fill factor can be used to compare I–V characteristics of different photoanodes regarding their optimization for PV/PEC tandem devices.

本文言語English
ページ(範囲)1017-1024
ページ数8
ジャーナルApplied Nanoscience (Switzerland)
9
5
DOI
出版ステータスPublished - 2019 7月 1
外部発表はい

ASJC Scopus subject areas

  • バイオテクノロジー
  • 原子分子物理学および光学
  • 材料科学(その他)
  • 物理化学および理論化学
  • 細胞生物学
  • 電子工学および電気工学

フィンガープリント

「Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core–shell heterojunction nanorods」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル