TY - JOUR
T1 - H1-estimates of Littlewood-Paley and Lusin functions for Jacobi analysis
AU - Kawazoe, Takeshi
N1 - Funding Information:
∗Partly supported by Grant-in-Aid for Scientific Research (C), No.
Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009/9
Y1 - 2009/9
N2 - For α ≥ β ≥ -1/2 let denote the weight function on R+ and L1(δ) the space of integrable functions on R+ with respect to δ(x)dx, equipped with a convolution structure. For a suitable φ ∈ L1(δ), we put for t > 0 and define the radial maximal operator Mφ as usual manner. We introduce a real Hardy space H1(δ) as the set of all locally integrable functions f on R+ whose radial maximal function Mφ(f) belongs to L1(δ). In this paper we obtain a relation between H1(δ) and H1(R). Indeed, we characterize H1(δ) in terms of weighted H1 Hardy spaces on R via the Abel transform of f. As applications of H1(δ) and its characterization, we shall consider (H1(δ),L1(δ))-boundedness of some operators associated to the Poisson kernel for Jacobi analysis: the Poisson maximal operator MP, the Littlewood-Paley g-function and the Lusin area function S. They are bounded on Lp(δ) for p > 1, but not true for p = 1. Instead, MP, g and a modified Sa,γ are bounded from H1(δ) to L1(δ).
AB - For α ≥ β ≥ -1/2 let denote the weight function on R+ and L1(δ) the space of integrable functions on R+ with respect to δ(x)dx, equipped with a convolution structure. For a suitable φ ∈ L1(δ), we put for t > 0 and define the radial maximal operator Mφ as usual manner. We introduce a real Hardy space H1(δ) as the set of all locally integrable functions f on R+ whose radial maximal function Mφ(f) belongs to L1(δ). In this paper we obtain a relation between H1(δ) and H1(R). Indeed, we characterize H1(δ) in terms of weighted H1 Hardy spaces on R via the Abel transform of f. As applications of H1(δ) and its characterization, we shall consider (H1(δ),L1(δ))-boundedness of some operators associated to the Poisson kernel for Jacobi analysis: the Poisson maximal operator MP, the Littlewood-Paley g-function and the Lusin area function S. They are bounded on Lp(δ) for p > 1, but not true for p = 1. Instead, MP, g and a modified Sa,γ are bounded from H1(δ) to L1(δ).
KW - Hardy space
KW - Jacobi analysis
KW - Littlewood-Paley function
KW - Lusin function
UR - http://www.scopus.com/inward/record.url?scp=70350230080&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350230080&partnerID=8YFLogxK
U2 - 10.1007/s10496-009-0201-1
DO - 10.1007/s10496-009-0201-1
M3 - Article
AN - SCOPUS:70350230080
SN - 1672-4070
VL - 25
SP - 201
EP - 229
JO - Analysis in Theory and Applications
JF - Analysis in Theory and Applications
IS - 3
ER -