Ideal class groups of CM-fields with non-cyclic galois action

Masato Kurihara, Takashi Miura

研究成果: Article査読

3 被引用数 (Scopus)

抄録

Suppose that L/k is a finite and abelian extension such that k is a totally real base field and L is a CM-field. We regard the ideal class group Cl L, of L as a Gal(L/k)-module. As a sequel of the paper [8] by the first author, we study a problem whether the Stickelberger element for L/k times the annihilator ideal of the roots of unity in L is in the Fitting ideal of ClL, and also a problem whether it is in the Fitting ideal of the Pontrjagin dual (ClL)v. We systematically construct extensions L/k for which these properties do not hold, and also give numerical examples.

本文言語English
ページ(範囲)411-439
ページ数29
ジャーナルTokyo Journal of Mathematics
35
2
DOI
出版ステータスPublished - 2012 12月

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Ideal class groups of CM-fields with non-cyclic galois action」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル