TY - JOUR
T1 - Identification of modules and functional analysis in CRC subtypes by integrated bioinformatics analysis
AU - Chen, Ru
AU - Sugiyama, Aiko
AU - Seno, Hiroshi
AU - Sugimoto, Masahiro
N1 - Publisher Copyright:
© 2019 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/8/1
Y1 - 2019/8/1
N2 - Colorectal cancer is one of the top three causes of cancer-related mortality globally, but no predictive molecular biomarkers are currently available for identifying the disease stage of colorectal cancer patients. Common molecular patterns in the disease, beyond superficial manifestations, can be significant in determining treatment choices. In this study, we used microarray data from colorectal cancer and adjacent normal tissue from the GEO database. These data were categorized into four consensus molecular subtypes based on distinct gene expression signatures. Weighted gene-based protein–protein interaction network analysis was performed for each subtype. NUSAP1, CD44, and COL4A1 modules were found to be statistically significant and present among all the subtypes and displayed though similar but not identical functional enrichment results. Reference of the characteristics of the subtypes to functional modules is necessary since the latter can stay resistant to platform changes and technique noise when compared with other analyses. The CMS4-mesenchy-mal group, which currently has a poor prognosis, was examined in the study. It is composed mainly of genes involved in immune and stromal expression, with modules focused on ECM dysregulation and chemokine biological processes. Hub genes detection and its’ mapping into the protein–protein interaction network can be indicative of possible targets against specific modules. This approach identified subtypes using enrichment-oriented analysis in functional modules. Proper annotation of functional analysis of modules from different subtypes of CRC might be directive for finding extra options for treatment targets and guiding clinical routines.
AB - Colorectal cancer is one of the top three causes of cancer-related mortality globally, but no predictive molecular biomarkers are currently available for identifying the disease stage of colorectal cancer patients. Common molecular patterns in the disease, beyond superficial manifestations, can be significant in determining treatment choices. In this study, we used microarray data from colorectal cancer and adjacent normal tissue from the GEO database. These data were categorized into four consensus molecular subtypes based on distinct gene expression signatures. Weighted gene-based protein–protein interaction network analysis was performed for each subtype. NUSAP1, CD44, and COL4A1 modules were found to be statistically significant and present among all the subtypes and displayed though similar but not identical functional enrichment results. Reference of the characteristics of the subtypes to functional modules is necessary since the latter can stay resistant to platform changes and technique noise when compared with other analyses. The CMS4-mesenchy-mal group, which currently has a poor prognosis, was examined in the study. It is composed mainly of genes involved in immune and stromal expression, with modules focused on ECM dysregulation and chemokine biological processes. Hub genes detection and its’ mapping into the protein–protein interaction network can be indicative of possible targets against specific modules. This approach identified subtypes using enrichment-oriented analysis in functional modules. Proper annotation of functional analysis of modules from different subtypes of CRC might be directive for finding extra options for treatment targets and guiding clinical routines.
UR - http://www.scopus.com/inward/record.url?scp=85071448729&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071448729&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0221772
DO - 10.1371/journal.pone.0221772
M3 - Article
C2 - 31469863
AN - SCOPUS:85071448729
SN - 1932-6203
VL - 14
JO - PloS one
JF - PloS one
IS - 8
M1 - e0221772
ER -